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Abstract. We study the transmission properties in the one-dimensional photonic crystal containing alter-
nate anisotropic left-handed material (LHM) layers and regular isotropic right-handed material (RHM)
layers. For such an anisotropic case, the dispersion relation from the Bloch theorem is derived and the
Bragg gaps of the periodic structure are observed. It is found that in the m = 0 Bragg gap, there is an
omnidirectionally reflectional (ODR) region, which is also invariant with a change of scale length, simi-
lar with the n̄ = 0 gap in isotropic one-dimensional photonic crystal. With the aid of effective medium
theory (EMT), the analytic expressions of all six elements of the effective electric permittivity tensor and
magnetic permeability tensor are obtained. By using these results, we investigate the ODR region in the
m = 0 Bragg gap in all the possible cases of both TE and TM modes. We find that with different choices of
parameters, the m = 0 Bragg gap has different transmission properties, and the ODR region in it changes,
consequently. The edges of the ODR region are given out in these cases. To one’s interest, these results
predict a complete reflection region in the m = 0 Bragg gap, which is able to omnidirectionally reflect
waves in both TE and TM modes.

PACS. 02.30.Mv Approximations and expansions – 42.25.-p Wave optics – 42.70.Qs Photonic bandgap
materials – 78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption,
reflection and transmission coefficients, emissivity)

1 Introduction

During the recent years, considerable experimental and
theoretical efforts have been devoted to the study of a new
kind of metamaterials that have simultaneously negative
electric permittivity ε and magnetic permeability µ. These
metamaterials are termed as “left-handed materials” due
to the fact that the electric field vector E, the magnetic
field vector H and the wave vector k form a left-handed
triplet other than that in the conventional materials [1],
and they can be experimentally realized by repetition of
arrays of split ring resonator and wires [2,3]. This kind of
materials have many unique properties such as the rever-
sal of Doppler shift for radiation, the reversal of Cerenkov
radiation and the famous negative refraction. Recently,
Pendry predicted that a slab of this left-handed material
with ε, µ = −1 can theoretically make a perfect lens [4].
However, whether this perfect lens can be realized in prac-
tice is still controversial [5,6].

Omnidirectional reflectors have attracted significant
attention in the last few years. The omnidirectional reflec-
tion obtained from one-dimensional photonic crystal has
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been reported since 1998 [7–10]. Recent reports showed
that the one-dimensional photonic crystal consists of LHM
and RHM can present a special band gap, correspond-
ing to that the average index equals to zero, i.e., n̄ = 0.
This gap not only can reflect waves with all incident an-
gles, but also won’t change when the structure under-
goes scaling [11,12]. Further research showed that the
one-dimensional quasiperiodic structure consists of LHM
and RHM also possesses the n̄ = 0 gap [13]. In all the
content mentioned above, the materials involved are all
isotropic, however, the anisotropic materials can also ob-
tain omnidirectional reflection. The one-dimensional pho-
tonic crystal formed by alternate anisotropic RHM layers
where the optic axis direction of the layers rocks back
and forth around the normal to the layers’ surfaces can
also make an omnidirectional reflector [14,15]. Since the
LHM realized in the experiments are always anisotropic
and the negative refraction can be realized in the uniax-
ial metamaterials with only one or two elements of the
permittivity tensor and permeability tensor is negative,
it is necessary to consider the anisotropy of the LHM
and the one-dimensional structure containing anisotropic
LHM. Quite recently, Liu et al showed that a slab of
uniaxially anisotropic LHM can make an omnidirectional
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reflector [16]. In this paper, we are interested in the omni-
directional reflection obtained from the one-dimensional
photonic crystal containing alternate anisotropic left-
handed material and isotropic right-handed material. Us-
ing the Bloch theorem, we obtain the dispersion relation
for this anisotropic case. To the best of our knowledge, the
dispersion relation for such an infinite periodic anisotropic
structure is first reported. Furthermore, with the aid of the
EMT method, we investigate the m = 0 Bragg gap, and
analyze the ODR region in it in all the possible cases of
both TE and TM modes.

This paper is organized as follows: in Section 2, we de-
scribe the theoretical model of our system and derive the
dispersion relation by using the Bloch theorem. Then, by
using the EMT method, we obtain the analytic expres-
sions of the elements of the effective electric permittivity
and magnetic permeability tensors. In Section 3, the two
different cases of TE mode wave are studied and the ODR
region is found and quite well described with EMT. In Sec-
tion 4, two different cases of TM mode are investigated.
The discussion on the cases with other choice of parame-
ters and the conclusion are given out in Section 5.

2 Theoretical development

We consider the one-dimensional photonic crystal con-
sists of alternate anisotropic left-handed material lay-
ers and isotropic right-handed material layers embedded
in vacuum. We choose the layers to be parallel to the
x–y plane with the z-axis normal to the interfaces of the
layers. To simplify the proceeding analysis, we assume the
anisotropic LHM layers with the electric permittivity ¯̄εL

tensor and magnetic permeability ¯̄µL tensor to be simul-
taneously diagonalizable, i.e.,

¯̄εL =

⎛
⎝

εLx 0 0
0 εLy 0
0 0 εLz

⎞
⎠ , ¯̄µL =

⎛
⎝

µLx 0 0
0 µLy 0
0 0 µLz

⎞
⎠ . (1)

2.1 Dispersion relation

For a TE mode case, the electric and magnetic fields in
one unit cell can be expressed as [17],

ELy = eikxx
(
eikLzz + Ae−ikLzz

)
,

HLx =
−kLz

ωµLx
eikxx

(
eikLzz − Ae−ikLzz

)
,

HLz =
kx

ωµLz
eikxx

(
eikLzz + Ae−ikLzz

)
, (2)

in anisotropic LHM layer and

ERy = eikxx
(
BeikRzz + Ce−ikRzz

)
,

HRx =
−kRz

ωµRx
eikxx

(
BeikRzz − Ce−ikRzz

)
,

HRz =
kx

ωµRz
eikxx

(
BeikRzz + Ce−ikRzz

)
, (3)

in RHM layer, where kLz and kRz are the z-components
of the wave vectors in the LHM and RHM layers, and kx

is the x-component. The differences between the electro-
magnetic waves in the LHM and RHM lie in the signs of
permittivity ε and permeability µ, thus leads to different
signs of kLz and kRz . The plane wave solutions specified by
(2) and (3) yields the following equation for determining
kL,Rz,

k2
L,Rz = εL,RyµL,Rx

ω2

c2
− µL,Rx

µL,Rz
k2

x. (4)

The tangential electric and magnetic field should be con-
tinuous at the interface (let it to be z = 0), i.e.,

ELy(z = 0−) = ERy(z = 0+),

HLx(z = 0−) = HRx(z = 0+). (5)

In addition, since the system is periodic, the electric and
magnetic field should obey the Bloch theorem, i.e.,

ELy(z = dL) = ERy(z = −dR)eiqd,

HLx(z = dL) = HRx(z = −dR)eiqd, (6)

where dL, dR are the thicknesses of single LHM and RHM
layer, respectively, d is the thickness of a unit cell and q
is the Bloch wave vector. The dispersion relation can be
derived from all these relations,

cos(qd) = cos (kLzdL) cos(kRzdR)

− 1
2

(
µRxkLz

µLxkRz
+

µLxkRz

µRxkLz

)
sin (kLzdL) sin (kRzdR) . (7)

It is evident that this dispersion relation can also be used,
when the RHM is anisotropic. Here, for simplicity, we
choose the RHM layers to be isotropic. When the wave
vectors and the thicknesses of layers satisfy the condition,

kLzdL + kRzdR = mπ, (m ∈ integers) (8)

the right hand part of equation (7) will be larger than
(or equal to) unity, and the Bloch wave vector q may be
imaginary, indicating a gap, which is the familiar Bragg
condition.

For the TM mode case, we have the magnetic and elec-
tric field in one unit cell as,

HLy = eikxx
(
eikLzz + Ae−ikLzz

)
,

ELx =
kLz

ωεLx
eikxx

(
eikLzz − Ae−ikLzz

)
,

ELz =
−kx

ωεLz
eikxx

(
eikLzz + Ae−ikLzz

)
, (9)

in the anisotropic LHM layer and

HRy = eikxx
(
eikRzz + Ae−ikRzz

)
,

ERx =
kRz

ωεRx
eikxx

(
eikRzz − Ae−ikRzz

)
,

ERz =
−kx

ωεRz
eikxx

(
eikRzz + Ae−ikRzz

)
, (10)
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Tperiod = TLTR =

⎛
⎜⎝

1 −µLxdL
ω

c
εLyµLx

ω2

c2
− µLx

µLz
k2

x

µLx
dL

c

ω
1

⎞
⎟⎠

⎛
⎜⎜⎝

1 −µRxdR
ω

c

εRyµRx
ω2

c2
− µRx

µRz
k2

x

µRx
dR

c

ω
1

⎞
⎟⎟⎠

=

⎛
⎜⎝

1 −(µLxfL + µRxfR)d
ω

c

((εLyfL + εRyfR)
ω2

c2
− (

fL

µLz
+

fR

µRz
)k2

x)d
c

ω
1

⎞
⎟⎠ , (14)

in the isotropic RHM layer. The wave vector kLz can be
determined as follows,

k2
L,Rz = µL,RyεL,Rx

ω2

c2
− εL,Rx

εL,Rz
k2

x. (11)

Similar with the above derivation in the TE case, the dis-
persion relation for the TM mode wave is,

cos(qd) = cos (kLzdL) cos(kRzdR)

− 1
2

(
εRxkLz

εLxkRz
+

εLxkRz

εRxkLz

)
sin(kLzdL) sin(kRzdR), (12)

and the Bragg condition also exists for the TM mode case.

2.2 Effective medium theory (EMT)

Since the negative refraction is realized in the GHz region,
the product of the wave vector kz and the thickness of one
layer dL,R generally satisfy the condition kzdL,R � 1. In
this regard, we can use the thin film approximation to
analyze the m = 0 Bragg gap. The transfer matrices of
the LHM layers and the RHM layers are as follows [12],

TL =

⎛
⎜⎝

cos(kLzdL) −µLxω

kLzc
sin(kLzdL)

kLzc

µLxω
sin(kLzdL) cos(kLzdL)

⎞
⎟⎠ ,

TR =

(
cos(kRzdR) −µRxω

kRzc sin(kRzdR)
kRzc
µRxω sin(kRzdR) cos(kRzdR)

)
, (13)

for the TE mode case. Since kzd � 1, we have
sin(kzdL,R) ≈ kzdL,R, and cos(kzdL,R) ≈ 1 [18]. Then,
the transfer matrix of a unit cell has the form,

(See equation (14) above)

in which, fL = dL/d, fR = dR/d. Because the photonic
crystal composed of both isotropic materials can be ef-
fectively seen as a uniaxial material (with x,y-elements
equal), in present paper, we can assume the effective elec-
tric permittivity and magnetic permeability tensors of
the one-dimensional photonic crystal consists anisotropic
LHM and isotropic RHM to be diagonalizable with the

forms as [19],

¯̄εeff =

⎛
⎝

εeff x 0 0
0 εeff y 0
0 0 εeff z

⎞
⎠ ,

¯̄µeff =

⎛
⎝

µeff x 0 0
0 µeff y 0
0 0 µeff z

⎞
⎠ , (15)

in which, the x, y-elements in the two tensors may not
equal. Similar as equation (4), the effective wave vector
kz can be determined by the following equation,

k2
eff z = εeff yµeff x

ω2

c2
− µeff x

µeff z
k2
eff x, (16)

and the effective transfer matrix of a period is:

Teff =

⎛
⎜⎝

1 −µeff xd
ω

c

(εeff y
ω2

c2
− k2

x

µeff z
)d

c

ω
1

⎞
⎟⎠ . (17)

Comparing equations (14) with (17), we can easily give
εeff y, µeff x and µeff z as,

µeff x = µLxfL + µRxfR, εeff y = εLyfL + εRyfR,

µeff z = µLzµRz/(µLzfR + µRzfL). (18)

This result can be indeed used, when both components are
anisotropic. In our model, the RHM layers are isotropic,
so that µRx = µRz = µR, εRy = εR. Here, we would
like to mention that equation (18) can also be derived
from the Bloch theorem, i.e. equation (7), if we take both
cos(kzdL,R) and sin(kzdL,R) up to the second order, that
is cos(kzdL,R) = 1 − 1

2k2
zd2

L,R, sin(kzdL,R) = kzdL,R.
On the other hand, for TM case, similarly, we have,

εeff x = εLxfL + εRxfR, µeff y = µLyfL + µRyfR,

εeff z = εLzεRz/(εLzfR + εRzfL), (19)

and the effective wave vector keff z,

k2
eff z = µeff yεeff x

ω2

c2
− εeff x

εeff z
k2

x. (20)

The equation (19) can also be used, when both compo-
nents are anisotropic. Since the RHM layers is isotropic,
we have εRx = εRz = εR, µRy = µR.
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Fig. 1. The solutions of equation (5), with the incident angle
changing from 0◦ to 90◦, for (a) m = 0, (b) m = −1, (c)
m = −2. Note that in (a) the curve for d = 3 mm and that for
d = 5 mm overlap.

3 TE mode wave

3.1 Case I

In this case, we choose µLx = 1 − 100/ω2,
εLy = 1 − 200/ω2, µLz = 2. The similar forms as µLx and
εLy chosen in present paper has been experimentally real-
ized and theoretically used in previous reports [4,12,21].
Another reason to choose this simple forms of permittiv-
ity and permeability lies in the simplicity for comparing
between the values of the effective permittivity and perme-
ability. The permittivity and permeability of the isotropic
RHM layer are chosen to be εR = 3, µR = 3. From the
forms of µLx and εLy, it is evident that in the angular fre-
quency region (0, 10×109 rad/s), µLx and εLy are simulta-
neously negative, resulting in the negative refraction in the
anisotropic LHM. Therefore, we only need to concentrate
on the transmission properties of the one-dimensional pho-
tonic crystal in this frequency region.

In Figure 1, the solutions of equation (8) are shown.
Here, we choose the thicknesses of unit cell to be 10 mm,

with one LHM layer and one RHM layer to be both 5 mm.
Since, the solutions for m equal to positive integers corre-
spond to the angular frequencies far away from the region
(0, 10× 109 rad/s), so that they are not plotted in the fig-
ure. To one’s interest, we find that the Bragg gaps keep
almost invariant, with the incident angle changing from
0◦ to 90◦. This indicates that these gaps may present om-
nidirectional reflection. However, after scaling the thick-
nesses of the layers to 3/5, we find that only the m = 0
Bragg gap remains still, while others move significantly.
This phenomenon is quite similar with the n̄ = 0 gap
in the one-dimensional photonic crystal containing both
isotropic materials [11]. This special property of the m = 0
Bragg gap may be much useful in the designing of omni-
directional microwave mirrors. Therefore, in the following
content, we will focus our attention only on the m = 0
Bragg gap. (Actually, the Bragg gaps for m equal to neg-
ative integers won’t move significantly when the incident
angles changes, but these gaps are rather narrow, which
limits the practical applications.)

The transmission spectra for the TE wave with dif-
ferent incident angles are shown in Figure 2. We can see
an ODR region exists in the m = 0 Bragg gap. Here, we
give the theoretical interpretation of the existence of the
ODR region. See in equation (16), if εeff y < 0, µeff x > 0
and µeff z > 0, the factors of ω2

c2 and k2
eff x are both neg-

ative, resulting k2
eff z to be always negative, so that keff z

is imaginary and the TE mode wave can not propagate
in the periodic structure for all real kx. This condition is
called the always-cutoff condition [20]. In Figure 2, two
dash lines correspond to two critical frequencies of ωTE

εy

(εeff y = 0) and ωTE
µx (µeff x = 0), which divide the re-

gion (0, 10 × 109 rad/s) into three parts A, B, C. The
ODR region is just in the part A, in which εeff y < 0,
µeff x > 0 and µeff z > 0, satisfying the always-cutoff con-
dition. In part B, the effective coefficients satisfy the con-
dition of εeff y > 0, µeff x > 0 and µeff z > 0, correspond-
ing to the normal-cutoff condition, so that in Figure 2,
when the incident angle turns larger, the lower frequency
waves, with lower values of εeff yµeff x, can not propagate
in the structure. In region C, the effective coefficients sat-
isfy εeff y < 0, µeff x < 0 and µeff z > 0, corresponding to
the never-cutoff condition, that is the wave can propagate
in the periodic structure with all incident angles. There-
fore, the edges of the ODR region can be determined by
following conditions,

ωTE
min : εeff y = 0 and ωTE

max : µeff x = 0. (21)

Then, the exact value of the edges of the ODR region can
be figured out as

ωTE
min = ωTE

µx = 5 × 109 rad/s

and ωTE
max = ωTE

εy = 7.071× 109 rad/s. (22)
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Fig. 2. The transmission for Case I of TE wave with different
incident angles, (a) 0◦, (b) 30◦, (c) 60◦, (d) 85◦. The thickness
of each layer is 5 mm, and the number of the unit cells is 60.

3.2 TE mode: case II

In case I, the parameters chosen correspond to the con-
dition that ωTE

µx < ωTE
εy . Here, in contrast to case I, we

investigate the m = 0 Bragg gap with the condition that
ωTE

µx > ωTE
εy . For simplicity, we just exchange the forms of

µLx and εLy to get µLx = 1 − 200/ω2, εLy = 1 − 100/ω2,
and other parameters remain the same as above. Since the
similar result as Figure 1 can be easily found, we just fo-
cus our attention on the m = 0 Bragg gap to investigate
the difference in transmission property between the two
cases. The conditions µeff x = 0 and εeff y = 0 determine
the critical frequencies ωTE

µx (7.071 × 109 rad/s) and ωTE
εy

(5× 109 rad/s), which divide the frequency spectrum into
three parts A, B and C in Figure 3. In part B and part
C, the transmission property and the cutoff condition re-
main the same as that in Case I, but in part A, we can
see that the ODR region doesn’t coincide with part A.
With the incident angle increasing, the lower frequency
waves begin to propagate in the periodic structure. This
can be understood by using the results derived above. In
part A, we have εeff y > 0, µeff x < 0 and µeff z > 0, substi-
tuting into equation (16), we find that with the incident
angle increasing, k2

x increasing, too, as a result, k2
eff z may

be positive when the value of µeff xεeff y is small, i.e. in

Fig. 3. The transmission for Case II of TE wave with differ-
ent incident angles, (a) 0◦, (b) 30◦, (c) 60◦, (d) 85◦. Other
parameters remain the same as above.

the lower frequency region, which corresponds to the anti-
cutoff condition [20]. So that the edges of ODR region can
be easily determined,

ωTE
min : εeff yµeff x−µeff x

µeff z
= 0 and ωTE

max : µeff x = 0,

(23)
and, here, ωTE

min and ωTE
max can be figured out to be

5.6195× 109 rad/s and 7.071 × 109 rad/s, respectively.
In addition, by using the effective medium theory, we

can predict that the ODR region won’t be affected with
a certain fluctuation of the thicknesses of the layers or
undergoes scaling, as long as the condition kzdL,R � 1
is satisfied, which is shown in Figure 4. In the figure, for
normal incidence, the profile of the case that the layer
thickness equals 5 mm is almost the same as that of the
thickness with fluctuation of 1/10, and the gaps for the
three cases are almost the same.

4 TM mode wave

4.1 Case I

For the TM mode case, we choose the parameters of the
anisotropic LHM and the RHM as εLx = 1 − 100/ω2,
µLy = 1 − 150/ω2 , εLz = 2, and εR = 3, µR = 3. The
Bragg gaps for m = 0,−1,−2 are shown in Figure 5. Sim-
ilar with the TE mode case, the Bragg gaps change very
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Fig. 4. The transmission for TE mode wave with the thick-
nesses of single layer are: (a) 5 mm (the solid line), (b) scaled
by 3/5, i.e. 3 mm (the dotted line), (c) the thicknesses of the
layers in the structure have a fluctuation of 1/10 (the dashed
line).

slowly with the incident angle changing from 0◦ to 90◦,
and when the system undergoes scaling by 3/5, only the
m = 0 Bragg gap keep invariant. Therefore, here we also
focus our attention on the m = 0 Bragg gap. The trans-
mission spectra for the TM wave are shown in Figure 6.
In the figure, we can see that there exists an ODR region
around (5× 109 rad/s, 6× 109 rad/s). Two dash lines cor-
responding to the positions of ωTM

εx (εeff x = 0) and ωTM
µy

(µeff y = 0) divide the region (0, 10× 109 rad/s) into three
parts A, B, C. In part A, we have εeff x < 0, µeff y > 0,
εeff z > 0 satisfying the always-cutoff condition for the TM
wave [20]. In the part B, εeff x > 0, µeff y > 0, εeff z > 0,
corresponding to the normal-cutoff condition, and in the
part C, εeff x < 0, µeff y < 0, εeff z > 0, which satisfies
the never-cutoff condition. So that the edges of the ODR
region can be determined by the follow equations:

ωTM
min : εeff x = 0 and ωTM

max : µeff y = 0. (24)

From these equations, we can figure out the exact edges
of the ODR region is ωTM

min = ωTM
εx = 5 × 109 rad/s and

ωTM
max = ωTM

µy = 6.12372× 109 rad/s.

4.2 Case II

In the above case, we have ωTM
εx < ωTM

µy , in contrast, in
this case, we will investigate the transmission property and
cutoff condition in the m = 0 Bragg gap with the condition
ωTM

εx > ωTM
µy . Here, for simplicity, we also just exchange

the forms of εLx and µLy and have µLy = 1 − 100/ω2 and
εLx = 1 − 150/ω2. Similarly, in Figure 7, since µeff y and
εeff x are simultaneously positive or negative in part B and
part C, the transmission property and cutoff condition
are the same as case I of TM mode. The only difference
between these two cases lies in part A. We can see that
with the incident angle increasing, the lower frequency
waves begin to propagate in the periodic structure. This
result is much the same as the case II of TE mode wave and
the part A just corresponds to the anti-cutoff condition,

Fig. 5. The same as Figure 1 but for TM case.

so that the edges of the ODR region can be determined
by these two equations.

ωTM
min : εeff xµeff y− εeff x

εeff z
= 0 and ωTM

max : εeff x = 0.

(25)
The ωTM

min and ωTM
max here is figured out to be

5.6195× 109 rad/s and 6.12372× 109 rad/s.
We also investigate the cases of normal incidence for

TM mode when the thicknesses of the layers undergo scal-
ing or have certain rate of fluctuation, which is shown in
Figure 8. Similar results with the TE mode case are ob-
tained. The profile corresponding to the periodic structure
with thickness fluctuation of 1/10 almost coincides with
that of the periodic structure without thickness fluctua-
tion and with the thicknesses of layers undergoes scaling,
the gap also changes little.

5 Discussion and conclusion

To one’s interest, we can get a complete reflection region
(in this region, waves with all incident angles in both TE
and TM mode can all be reflected) in this anisotropic
one-dimensional photonic crystal with different forms of
elements of the permittivity and permeability tensors,
and the complete reflection region can be expressed as[
ωTE

min, ωTE
max

] ∩ [ωTM
min, ωTM

mam

]
. If one carefully choose the

elements’ forms of the permittivity and permeability of
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Fig. 6. The transmission for Case I of TM mode wave with
different incident angles, (a) 0◦, (b) 30◦, (c) 60◦, (d) 85◦.

Fig. 7. The transmission for Case II of TM mode wave with
different incident angles, (a) 0◦, (b) 30◦, (c) 60◦, (d) 85◦.

Fig. 8. The same as Figure 4 but for TM case.

the LHM, one can get a broad complete reflection region,
which may be very useful in making microwave mirrors.

In fact, the elements of the anisotropic LHM layers
can be chosen as other forms (uniaxial or bianisotropic).
With different choosing of the elements of the permit-
tivity tensor and the permeability tensor of the LHM
layer, the results will be much different. For example, if
we choose µLx = µLy = µLz (for example, 1 − 100/ω2),
and εLx = εLy = εLz (for example, 1 − 200/ω2), and
other parameters remain the same as above, which is
the case of the one-dimensional photonic crystal consists
of isotropic LHM and RHM layers, the effective permit-
tivity and permeability can also be determined as equa-
tions (18) and (19), but the effective material will be uni-
axially anisotropic. For the TE mode wave, the case is
similar with the case I in Section 3, and for the TM mode
wave, the case is similar with the case II in Section 4.
We can get a complete reflection region corresponding to[
ωTE

min, ωTE
max

] ∩ [ωTM
min, ωTM

max

]
. However, with other choos-

ing the forms of εL and µL, the complete reflection region
in the m = 0 Bragg gap doesn’t always exist for certain
forms. As well as the cases considered in present paper to
choose different forms of the elements of the anisotropic
LHM to get complete reflection region, another practical
method to get an optimal width of complete reflection re-
gion, one can carefully choose an anisotropic RHM with
specific x, y, z-elements of permittivity tensor and per-
meability tensor to be one of the components in the one-
dimensional photonic crystal, as well as a uniaxial LHM
to be the other component.

In conclusion, we study the transmission properties
and the dispersion relation of the one-dimensional pho-
tonic crystal containing alternate anisotropic left-handed
material (LHM) layers and regular isotropic right-handed
material (RHM) layers. The dispersion relation of an infi-
nite periodic structure containing anisotropic LHM is de-
rived, which to our knowledge is first reported. We find
that there exists an ODR region in the m = 0 Bragg gap
and this region is invariant for scaling, which is similar
as the n̄ = 0 gap in isotropic one-dimensional photonic
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crystal. By adopting the effective medium theory, we get
the effective permittivity and permeability of the 1-D pho-
tonic crystal. We investigate the ODR region in the m = 0
Bragg gap for all cases of TE and TM mode with the aid
of EMT method. Moreover, the edges of the ODR region
are given out for all these cases, and the results predict a
complete reflection region in the m = 0 Bragg gap.

It should be noted that, in the present paper, we only
choose the x,y-elements of the permittivity and permeabil-
ity of the LHM to be negative, and the z-element is chosen
to be positive and dispersion-less. However, the z-element
can also be negative, and the transmission property may
be much more complicated, which need to be further stud-
ied.
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